Перейти к публикации

Биология и Генетика


Рекомендованные сообщения

Генетика развития растений (биология развития растений) — частная отрасль генетики, изучающая особенности развития растений, гены, экспрессирующиеся и обеспечивающие нормальное формирование и функционирование тканей и органов растений.

Генетика развития растений является одним из наиболее бурно развивающихся направлений современной генетики, которое имеет огромное фундаментальное и прикладное значение. В настоящее время в ряде отечественных вузов биологического и сельскохозяйственного профиля осуществляется подготовка специалистов для работы в различных областях биологии и генетики развития растений.

 

Становление науки

Современное состояние биологии характеризуется бурным переходом от описательного отражения действительности к расшифровке конкретных закономерностей, лежащих в основе живой природы. При этом традиционные биологические вопросы типа «как выглядит объект?» и «что с ним происходит?» сменились на совершенно новые — «почему он выглядит именно так?» и «как он функционирует?».

Безусловно, попытки ответить на эти вопросы неоднократно предпринимались и раньше. Однако по-настоящему возможным это стало лишь с пониманием того, что каждое проявление жизни, каким бы сложным оно не казалось, является в конечном итоге результатом функционирования определённых молекул при всем многообразии их взаимодействий. Современная наука располагает всего лишь двумя прямыми подходами, позволяющими исследовать биологические функции молекул. Первый подход заключается в анализе последствий, вызванных инактивацией определённых молекул организма (этого можно достичь, либо используя узко специфичные ингибиторы, либо получая мутации, нарушающие нормальный биосинтез именно данных молекул). Напротив, альтернативный подход предполагает увеличение активности исследуемых молекул либо при их добавлении извне, либо за счёт усиления их биосинтеза in vivo (например, в случае трансформации организма дополнительными копиями соответствующего гена). При этом независимо от выбранного подхода, основную роль в таких исследованиях играют методы молекулярной биологии и генетики. Именно по этой причине синтез молекулярно-биологического и -генетического подходов, получивший название молекулярная генетика, стал ведущей идеологией большинства направлений современной биологии. Одним из таких направлений является биология развития. Если в своём первоначальном виде эта наука сформировалась на стыке эмбриологии, физиологии и цитологии, то именно использование молекулярно-генетических подходов позволяет успешно расчленять сложнейшие процессы развития на множество «элементарных» стадий, каждая из которых обслуживается строго определёнными молекулами и контролируется особой группой генов.

В то же время, учитывая значительное своеобразие высших растений, правомочно поставить следующий вопрос: существуют ли некие особенности клеточной дифференцировки или морфогенеза, характерные только для данной группы эукариот? В этом плане молекулярная генетика развития растении несомненно представляет не только фундаментальный, но и огромный практический интерес.

 

История

За свою более чем 200-летнюю историю биология развития высших растений прошла через несколько этапов, отражающих постепенную эволюцию взглядов на существо изучаемой проблемы.

  • На первом из этих этапов практически все внимание уделялось лишь общему описанию развития высших растений применительно к конкретным видам или более крупным таксономическим единицам.
  • С началом второго этапа, основные интересы исследователей были переключены на анализ разнообразных внешних факторов (таких как освещённость, температура, химический состав окружающей среды и т. п.), оказывающих существенное влияние на развитие растений.
  • Центральным событием третьего этапа стало обнаружение эндогенных соединений, осуществляющих регуляцию развития организма (в случае растений подобные вещества были названы фитогормонами). На этом этапе неоднократно предпринимались попытки объяснить все закономерности развития растений именно за счёт особенностей функционирования фитогормональных систем.
  • Начало четвёртого этапа было ознаменовано выявлением отдельных мутаций, не затрагивающих фитогормональную систему, но заметно влияющих на процессы развития растения. Эти данные убедительно свидетельствовали о том, что по меньшей мере некоторые процессы развития контролируются у высших растений не только фитогормональной системой, но и определёнными генами. Впрочем, никаких представлений о конкретной роли подобных генов ещё сформулировано не было.
  • Современный (пятый) этап оперирует уже не отдельными генами, а так называемыми генетическими программами развития. Каждая такая программа представляет собой определённую последовательность из многочисленных «элементарных» событий, лежащих в основе морфогенеза или же клеточной дифференцировки. При этом любое из рассматриваемых событий (другими словами — любой молекулярный процесс в составе отдельной программы развития) является закономерным результатом предыдущего и служит непосредственной причиной последующего. Таким образом, каждую подобную программу можно рассматривать в качестве конкретной причинной основы закономерного развития организма.

 

Направления

Генетика развития растений проводит свои исследования в следующих направления:

  1. Генетический контроль онтогенеза
  2. Генетический контроль сигнальных путей
  3. Генетические механизмы регуляции экспрессии генов
  4. Генетические механизмы, контролирующие взаимодействия клеток и тканей

 

Методы

  1. Методы классической генетики:
    • Клональный анализ (использование генетических химер)
    • Мутационный анализ
    • Генетический анализ
  2. Методы физиологической и биохимической генетики
    • Биометрический анализ
    • Молекулярно-генетический и системный подходы
    • Изучение биосинтеза белков, жиров, углеводов и нуклеиновых кислот
  3. Методы молекулярной генетики
    • Клонирование и молекулярный анализ генов
    • Изучение экспрессии генов
  4. Методы генетической трансформации
    • Функциональный анализ клонированных генов
    • Анализ клонов

 

Основные понятия

Онтогенез (индивидуальное развитие, от др.-греч. ὤνgen. ὄντος ʻсущийʼ и γένεσις ʻзарождениеʼ) растения — это естественный процесс с последовательной сменой нескольких возрастных этапов, среди которых принято выделять:

  1. Эмбриональный — от зиготы до созревания семени (включительно).
  2. Ювенильный — от прорастания семени до начала формирования репродуктивных органов.
  3. Зрелость и размножение —закладка и развитие репродуктивных органов, образование семян и плодов.
  4. Старость и отмирание

В онтогенезе реализуются потенции генотипа в определённых условиях среды, в результате чего формируются растения определённого фенотипа.

Онтогенез растения включает в себя два существенных аспекта: собственно жизнь особи (она начинается со стадии зиготы и продолжается вплоть до естественной смерти) и воспроизведение новых особей (также начинается с зиготы, но заканчивается формированием гамет).

В процессе эволюции у высших растений произошло пространственное совмещение гапло- и диплофаз в одном организме: гаметофит развивается прямо на спорофите. Этот момент очень важен, поскольку спорофит имеет собственную эффективную систему защиты, за счёт чего защищённым становится и гаметофит.

Рост — понятие, характеризующее необратимые количественные изменения, происходящие во время развития организма.

Дифференцировка — качественные изменения, происходящие в процессе развитии организма наряду с количественными.

Морфогенез — это процесс формообразования, то есть закладки, роста и развития органов растения. Таким образом, дифференцировка, рост и морфогенез являются тесно взаимосвязанными процессами.

Детерминация — процесс, когда дифференцировка приводит к необратимому изменению клеток. Этот процесс называют

 

Модельные растения

Генетика развития в своих исследованиях использует модельные растения. Такие растения должны иметь короткий цикл развития, иметь небольшое количество хромосом и обладать высокой плодовитостью.

  • Резуховидка Таля Arabidopsis — гены онтогенеза, гены развития корней, побегов, листьев и цветков
  • Львиный Зев Antirrhinum majus — гены развития цветка и соцветий, побегов и листьев

Результаты, полученные при изучении модельных растений, можно экстраполировать на растения, которые трудно изучить.

Литература

  • Биология развития (в трех томах). М.: Мир. 1994.
  • Инге-Вечтомов С. Г. Генетика с основами селекции. М. Высшая школа. 1989. 592 с.
  • Л. А. Лутова, Н. А. Проворов, О. Н. Тиходеев, И. А. Тихонович, Л. Т. Ходжайова, С. О. Шишкова Генетика развития растений/ Под ред. чл.-кор. РАН С. Г. Инге-Вечтомова. Санкт-Петербург, Наука. 2000. 6-13 с.
  • Льюнн Б. Гены. М.: Мир, 1987.
  • Молекулярная биология клетки (в трех томах). М — Мир. 1994. Т. 1. 516 с; Т. 2. 540 с; Т. 3. 504 с.
  • Полевой В. В. Физиология растений. М : Высшая школа. 1989. 464 с.
  • Уоринг Ф., Филлипс И. Рост растений и дифференцировка. М.: Мир. 1984. 512 с.

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Наследование (биология)

 

Насле́дование — передача генетической информации (генетических признаков) от одного поколения организмов к другому. В основе наследования лежат процессы удвоения, объединения и распределения генетического материала, поэтому закономерности наследования у разных организмов зависят от особенностей этих процессов.

В зависимости от локализации генов в клетке эукариот различают ядерное и цитоплазматическое наследование. В свою очередь ядерное наследование можно подразделить на аутосомное и сцепленное с полом. На основе характера проявления признаков в гетерозиготевыделяют также наследование с полным и неполным доминированием. Различают также зависимое от пола наследование (у признаков, проявляющихся по-разному у особей разного пола), а также ограниченное полом наследование. В последнее время выделяют также эпигенетическое наследование, которое определяет закономерности наследования импринтируемых генов и признаков, определяемых генами инактивируемой Х-хромосомы у особей женского пола.

 

• Типы наследования 

Хромосомное наследование

Мнение о том, что хромосомы — подходящие кандидаты на роль материальных носителей наследственности, одним из первых высказал Август Вейсман. В своей «Эволюционной теории», вышедшей в 1903 году, Вейсман отнёс наследственное вещество, называемое им зародышевой плазмой, к ядру половых клеток, а затем — к хромосомам и хроматину. Он это сделал потому, что, судя по цитологическим данным, хромосомы вели себя именно так, как им следовало себя вести, если бы они представляли собой вещество наследственности: они удваивались и разделялись на две равные группы при делении соматических клеток; число их уменьшалось вдвое при образовании гамет, предшествующем смешиванию мужского и женского вкладов во время оплодотворения.

Хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности.

Цитоплазматическое наследование

Явление нехромосомного наследования, иначе называемого цитоплазматическим наследованием, связано главным образом с двумя клеточными органеллами, локализованными в цитоплазме: с митохондриями и с хлоропластами у растений. Хлоропласты и митохондрии имеют собственную ДНК, в которой локализовано небольшое количество генов, жизненно необходимых для функционирования клетки.

Цитоплазматические гены отличаются от ядерных по нескольким параметрам. Во-первых, цитоплазматические гены присутствуют в сотнях и тысячах копий в каждой клетке, поскольку в клетке может быть множество органелл, каждая из которых содержит несколько молекул ДНК. Во-вторых, гены органелл расходятся при делении клеток по дочерним клеткам совершенно случайно и в смысле числа копий, и в смысле аллельного состава. В-третьих, цитоплазматические гены передаются, как правило, только через гаметы одного родителя, чаще всего, через женские гаметы. В-четвёртых, цитоплазматические гены крайне редко рекомбинируют, и процесс рекомбинации ДНК органелл описан только для соматических клеток. В-пятых, цитоплазматические гены могут реплицироваться неоднократно за один клеточный цикл.

Цитоплазматическая ДНК может находиться в состоянии гетероплазмии, когда в одной органелле, клетке, органе или организме сосуществуют несколько вариантов цитоплазматических генов, или в состоянии гомоплазмии, когда не наблюдается различий по цитоплазматическим генам.

Отсутствие механизма упорядоченного распределения цитоплазматических генов по дочерним клеткам при делениях определяет две основных характеристики передачи цитоплазматических генов: с одной стороны, для признаков, кодируемых ДНК органелл, характерно частое расщепление в митозе; и, с другой стороны, им свойственно отсутствие расщепления или нерегулярное расщепление в мейозе.

Явление нехромосомного (внехромосомного, внеядерного, цитоплазматического) наследования было открыто в 1909—1910 году немецкими исследователями Карлом Корренсом и Эрвином Бауром. В 1909 году К. Корренс сообщил, что при изучении декоративного растения Mirabilis jalapa (ночная красавица) он обнаружил, что окраска листьев (зеленая или пёстрая) наследуется не по Менделю и зависит от материнского растения. Независимо от него в том же выпуске журнала Э.Баур опубликовал статью, в которой также описывал неменделевское наследованиепризнаков при скрещивании пёстролистных растений герани Pelargonium, связанным, по предположению Э.Баура, с наследованием пластид по материнской и отцовской линии.  В 1910 году Э.Баур опубликовал результаты экспериментов с пестролистными растениями львиного зева Antirrhinum majus, в которых наследование цвета побегов было исключительно материнским. Э.Баур дал правильную интерпретацию явления неменделевского наследования пёстролистности, считая, что хлоропласты, как и ядро, несут наследственные факторы, способные мутировать, а при митозе пластиды распределяются случайным образом.

Митохондриальное наследование

Для митохондриальной ДНК (мтДНК) характерно однородительское наследование, и в большинстве случаев зигота получает все свои митохондрии от матери.

Существуют механизмы, которые практически полностью предотвращают передачу отцовских митохондрий следующему поколению. Есть некоторые исключения из этого правила. В некоторых группах растений и грибов обнаружено наследование митохондрий от обоих родительских организмов.

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Дисперсия (биология)

 

Дисперсия — термин, обозначающий разнообразие признаков в популяции.

Одна из количественных характеристик популяции. Для описания бесполой и гермафродитной популяции кроме дисперсий по каждому признаку (σ) надо знать также число особей (N) и средние значения признаков (Δx).

В раздельнополой популяции каждый пол имеет свою величину дисперсии — (σ) и (σ). Другие параметры — это число особей (N), соотношение полов и половой диморфизм.

 
• Дисперсия в онтогенезе •

Генотипическая дисперсия

Дисперсия генетического материала популяции или вида. Включает генетическую информацию ядрамитохондрийрибосом и других органелл. Новое генетическое разнообразие происходит за счет мутаций, которые могут принимать форму рекомбинациимиграции и/или нарушений кариотипа(числа, формы, размера и внутреннего распределения хромосом). Генетический дрейф является статистической мерой скорости генотипического изменения популяции.

Фенотипическая дисперсия

Один и тот же ген в разных условиях среды может реализоваться в 1, 2, несколько или целый спектр значений признака (фенов). Точно так же один и тот же генотип в разных условиях среды может реализоваться в целый спектр, потенциально возможных фенотипов, но в каждом конкретном онтогенезе реализуется из этого спектра фенотипов только один. Под наследственной нормой реакции понимают максимально возможную ширину этого спектра. Норма реакции характеризует долю участия среды в реализации признака. Чем шире норма реакции, тем больше влияние среды и тем меньше влияние генотипа в онтогенезе. Обычно чем разнообразнее условия обитания вида, тем шире у него норма реакции.

 
• Дисперсия в филогенезе •

Чтобы популяция «чувствовала» приближение фронта вредного фактора среды, необходим контакт кривой смертности популяции с этим фронтом. То есть за получаемую информацию популяции приходится все время платить определенную жертву в виде элиминациисамых чувствительных к данному фактору особей. При этом плата пропорциональна получаемой информации и тесно связана с фенотипической дисперсией популяции. Если фенотипическая дисперсия мала, то в стабильной среде нет элиминации и нет информационного контакта популяции со средой. В этом случае очередное внезапное изменение среды может застать популяцию врасплох и погубить её целиком. Наоборот, если фенотипическая дисперсия очень велика, то чрезмерно растет плата за новую информацию. Следовательно, существует некая оптимальная для данной популяции в данной среде величина фенотипической дисперсии, которая обеспечивает заблаговременное получение необходимой информации при минимальной плате за неё.

Отрицательная обратная связь, регулирующая дисперсию популяции

Известные генетические механизмы диплоидиигомо-гетеро- зиготности и гаметности, способны регулировать дисперсию и автоматически поддерживать её оптимум за счет механизма отрицательной обратной связи.

Гетерозиготность играет консервативную роль предохраняя рецессивные признаки от действия отбора. Дисперсия при этом уменьшается. Гомозиготность играет оперативную роль, проявляет рецессивные признаки и увеличивает дисперсию. В простейшем случае моногибридного скрещивания: 2Aa ↔ AA + aa, рост дисперсии означает увеличение пропорции гомозигот, тогда как её уменьшение, наоборот связано с увеличением пропорции гетерозигот. Было показано, что изменение равновесия влево (гибридизацияаутбридинг) увеличивает гетерозиготность, увеличивает потенциальную изменчивость и сужает дисперсию. С другой стороны, изменение равновесия вправо (инбридинг) уменьшает гетерозиготность, увеличивает свободную изменчивость и дисперсию. Переход к более сложным полиаллельным случаям не меняет основных выводов.

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Популя́ция (от лат. populatio — население) — совокупность организмов одного вида, длительное время обитающих на одной территории (занимающих определённый ареал) и частично или полностью изолированных от особей других таких же групп. Этот термин используется в различных разделах биологии.

 

• В экологии и эволюционной теории •

Популяция — совокупность особей одного вида, обладающая общим генофондом, способная к более-менее устойчивому самовоспроизводству (как половому, посредством панмиксии в идеальном случае, так и бесполому), относительно обособленная (географически или репродуктивно) от других групп, с представителями которых (при половой репродукции) потенциально возможен генетический обмен. С точки зрения популяционной генетики, популяция — группа особей, в пределах которой вероятность скрещивания во много раз превосходит вероятность скрещивания с представителями других подобных групп. Обычно говорят о популяциях как о группах в составе вида или подвида.

Термин введён Вильгельмом Иогансеном в 1903 году, однако уже Чарлз Дарвинобъяснял эволюцию видов изменчивостью и конкуренцией групп особей (например, в 12-й главе «Происхождения видов» он писал: «В большинстве случаев именно у всех тех организмов, которые обычно соединяются для каждого рождения или свободного скрещивания время от времени, особи одного вида, живущие в одном ареале, останутся почти однообразными благодаря скрещиванию; вследствие этого многие особи должны претерпевать одновременно модификацию, и величина модификации на каждой стадии не определяется происхождением от единственного родителя» ).

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Геноти́п — совокупность генов данного организма. Генотип, в отличие от понятия генофонд, характеризует особь, а не вид.

В более узком смысле под генотипом понимают комбинацию аллелей гена или локуса у конкретного организма.

Процесс определения генотипа называют генотипированием. Генотип вместе с факторами внешней среды определяет фенотип организма. При этом особи с разными генотипами могут иметь одинаковый фенотип, а особи с одинаковым генотипом могут в различных условиях отличаться друг от друга.

Термин «генотип» наряду с терминами «ген» и «фенотип» ввёл генетик В. Л. Иогансен в 1909 году в книге «Elemente der exakten Erblichkeits lehre» (нем. «Элементы точного учения наследственности»)

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Феноти́п (от др.-греч. φαίνω «являю; обнаруживаю» + τύπος «образец») — совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешнесредовых факторов — феногенеза.

У диплоидных организмов в фенотипе проявляются доминантные гены.

Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза(индивидуального развития).

Несмотря на кажущееся строгое определение, концепция фенотипа имеет некоторые неопределённости.

Во-первых, большинство молекул и структур, кодируемых генетическим материалом, не заметны во внешнем виде организма, хотя являются частью фенотипа. Например, именно так обстоит дело с группами крови человека. Поэтому расширенное определение фенотипа должно включать характеристики, которые могут быть обнаружены техническими, медицинскими или диагностическими процедурами.

Дальнейшее, более радикальное расширение может включать приобретённое поведение или даже влияние организма на окружающую среду и другие организмы.

Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. В первом приближении можно говорить о двух характеристиках фенотипа:

а) число направлений выноса характеризует число факторов среды, к которым чувствителен фенотип, — мерность фенотипа; б) «дальность» выноса характеризует степень чувствительности фенотипа к данному фактору среды.

В совокупности эти характеристики определяют богатство и развитость фенотипа. Чем многомернее фенотип и чем он чувствительнее, чем дальше фенотип от генотипа, тем он богаче.

 

• Генетические факторы, оказывающие влияние на формирование фенотипа •

 

… История любого фенотипа, сохраненного длительным отбором, — это цепь последовательных испытаний его носителей на способность воспроизводить самих себя в условиях непрерывного изменения пространства вариаций их геномов. …
… Не изменения генотипа определяют эволюцию и её направление. Наоборот, эволюция организма определяет изменение его генотипа.

— Шмальгаузен И. И. Организм как целое в индивидуальном и историческом развитии. Избранные труды.. — М.: Наука, 1982.

К этим факторам относятся взаимодействие генов из одной (доминированиерецессивностьнеполное доминированиекодоминирование) и разных (доминантный и рецессивный эпистазгипостазкомплементарность) аллелей, множественные аллели, плейотропное действие гена, доза гена.

 

• Историческая справка •

Термин фенотип предложил датский учёный Вильгельм Иогансен в 1909 году вместе с концепцией генотипа, чтобы различать наследственность организма от того, что получается в результате её реализации (см. выше)

 Идею о различии носителей наследственности от результата их действия можно проследить уже в работах Грегора Менделя (1865) и Августа Вейсмана. Последний различал (в многоклеточных организмахрепродуктивные и соматические клетки.

 

Фенотипическая дисперсия (см. выше)

 

• Фенотип и онтогенез •

Факторы, от которых зависит фенотипическое разнообразие, генетическая программа (генотип), условия среды и частота случайных изменений (мутации), обобщены в следующей зависимости:

 

генотип + внешняя среда + случайные изменения → фенотип


Способность генотипа формировать в онтогенезе, в зависимости от условий среды, разные фенотипы называют нормой реакции. Она характеризует долю участия среды в реализации признака. Чем шире норма реакции, тем больше влияние среды и тем меньше влияние генотипа в онтогенезе. Обычно чем разнообразнее условия обитания вида, тем шире у него норма реакции.

 

• Примеры •

Иногда фенотипы в разных условиях сильно отличаются друг от друга. Так, сосны в лесу высокие и стройные, а на открытом пространстве — развесистые. Форма листьев водяного лютика зависит от того, в воде или на воздухе оказался лист.

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Но́рма реа́кции — способность генотипаформировать в онтогенезе, в зависимости от условий среды, разные фенотипы. Она характеризует долю участия среды в реализации признака и определяет модификационную изменчивость вида. Чем шире норма реакции, тем проще влияние среды и тем меньше влияние генотипа в онтогенезе.

Один и тот же ген в разных условиях среды может реализоваться в несколько вариаций проявления признака.

В каждом конкретном онтогенезе из спектра проявлений признака реализуется только один.

Аналогично один и тот же генотип в разных условиях среды может реализоваться в целый спектр потенциально возможных фенотипов, но в каждом конкретном онтогенезе реализуется только один фенотип.

Под наследственной нормой реакции понимают максимально возможную ширину этого спектра: чем он шире, тем шире норма реакции.

Фенотипическое значение любого количественного признака (Ф) определяется, с одной стороны, его генотипическим значением (Г), с другой стороны — влиянием среды (С):

Ф = Г + С

Если влияние среды выразить в виде доли (χ) от фенотипического значения, то есть

С = χ * Ф

, то 

Ф = Г / (1 — χ)

Если взять крайние значения фенотипа при максимальном влиянии среды, то:

χ = 1 — (Г / Ф) = 1 — H

где H — наследуемость. χ является нормой реакции по данному признаку. Норма реакции — это та максимальная доля от фенотипического значения признака, на которую может изменить признак среда.

Все биологические виды имеют определённую норму реакции генотипа, без изменения которого (в ходе микроэволюции) амплитуда изменений фенотипа не может выйти за генетически детерминированный предел.

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Мутагенез — внесение изменений в нуклеотидную последовательность ДНК(мутаций). Различают естественный (спонтанный) и искусственный (индуцированный) мутагенез.

 

• Естественный мутагенез •

Естественный, или спонтанный, мутагенез происходит вследствие воздействия на генетический материал живых организмов мутагенных факторов окружающей среды, таких как ультрафиолетрадиация, химические мутагены.

Теория мутаций Де Фриза и Коржинского

Мутационная теория составляет одну из основ генетики. Она зародилась вскоре после переоткрытия Т. Морганом законов Менделя в начале XX столетия. Можно считать, что она почти одновременно зародилась в умах голландца Хуго Де Фриза (1903) и российского ботаника Сергея Коржинского (1899). Однако приоритет в первенстве и в большем совпадении изначальных положений принадлежит российскому ученому. Признание основного эволюционного значения за дискретной изменчивостью и отрицание роли естественного отбора в теориях Коржинского и Де Фриза было связано с неразрешимостью в то время противоречия в эволюционном учении Чарльза Дарвина между важной ролью мелких уклонений и их «поглощением» при скрещиваниях (см. кошмар Дженкина).

Основные положения мутационной теории Коржинского — Де Фриза можно свести к следующим пунктам.

  1. Мутации внезапны, как дискретные изменения признаков
  2. Новые формы устойчивы
  3. В отличие от наследственных изменений, мутации не образуют непрерывных рядов, не группируются вокруг какого-либо среднего типа. Они представляют собой качественные скачки изменений
  4. Мутации проявляются по-разному и могут быть как полезными, так и вредными
  5. Вероятность обнаружения мутаций зависит от числа исследуемых особей
  6. Сходные мутации могут возникать неоднократно

Механизмы мутагенеза

Последовательность событий, приводящая к мутации (внутри хромосомы) выглядит следующим образом: происходит повреждение ДНК (если повреждение ДНК не было корректно репарировано, оно приведет к мутации); в случае, если повреждение произошло в незначащем (интрон) фрагменте ДНК или если повреждение произошло в значащем фрагменте (экзон) и, вследствие вырожденности генетического кода, не произошло нарушения, то мутации образуются, но их биологические последствия будут незначительными или могут не проявиться.

Мутагенез на уровне генома также может быть связан с инверсиями, делециями, транслокациями, полиплоидией и анеуплоидией, удвоением, утроением (множественной дупликацией) некоторых хромосом и т. д.

В настоящее время существует несколько подходов, использующихся для объяснения природы и механизмов образования точечных мутаций. В рамках общепринятой, полимеразной модели считается, что единственной причиной образования мутаций замены оснований являются спорадические ошибки ДНК-полимераз. В настоящее время такая точка зрения является общепринятой.

Джеймс Уотсон и Фрэнсис Крикпредложили таутомерную модель спонтанного мутагенеза. Они объяснили появление спонтанных мутаций замены оснований тем, что при соприкосновении молекулы ДНК с молекулами воды могут изменяться таутомерные состояния оснований ДНК.

Образование мутаций замены оснований объяснялось образованием Хугстиновских пар. Предполагается, что одной из причин образования мутаций замены основания является дезаминирование 5-метилцитозина.

Точечные мутации

Точечная мутация, или единственная замена оснований, — тип мутации в ДНК или РНК, для которой характерна замена одного азотистого основания другим. Термин также применяется и в отношении парных замен нуклеотидов. Термин точечная мутация включает также инсерции и делеции одного или нескольких нуклеотидов.

Хромосомные мутации

  1. Инверсии
  2. Реципрокные транслокации
  3. Делеции
  4. Дупликации и инсерционные транслокации

Геномные мутации

  1. Анеуплоидия
  2. Полиплоидия
  • Like +1 3

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах
  • SSLab locked this тему
Гость
Эта тема закрыта для публикации сообщений.
×
×
  • Создать...